Topological nano-switches in higher-order topological insulators

Author:

Poata JosephORCID,Taddei FabioORCID,Michele Governale ORCID

Abstract

Abstract We consider multi-terminal transport through a flake of rectangular shape of a two-dimensional topological insulator in the presence of an in-plane magnetic field. This system has been shown to be a second-order topological insulator, thus exhibiting corner states at its boundaries. The position of the corner states and their decay length can be controlled by the direction of the magnetic field. In the leads we assume that the magnetic field is absent and therefore we have helical one-dimensional propagating states characteristic of the spin-Hall effect. Using a low-energy effective Hamiltonian we show analytically that, in a two-terminal setup, transport can be turned on and off by a rotation of the in-plane magnetic field. Similarly, in a three terminal configuration, the in-plane magnetic field can be used to turn on and off the transmission between neighbouring contacts, thus realising a directional switch. Analytical calculations are supplemented by a numerical finite-difference method. For small values of the Fermi energy and field strength, the analytical results agree exceptionally well with the numerics. The effect of disorder is also addressed in the numerical approach. We find that the switching functionality is remarkably robust to the presence of strong disorder stemming from the topological nature of the states contributing to the electron transport.

Funder

MacDiarmid Institute for Advanced Materials and Nanotechnology

Ministero dell’Università e della Ricerca

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3