Abstract
Abstract
We consider multi-terminal transport through a flake of rectangular shape of a two-dimensional topological insulator in the presence of an in-plane magnetic field. This system has been shown to be a second-order topological insulator, thus exhibiting corner states at its boundaries. The position of the corner states and their decay length can be controlled by the direction of the magnetic field. In the leads we assume that the magnetic field is absent and therefore we have helical one-dimensional propagating states characteristic of the spin-Hall effect. Using a low-energy effective Hamiltonian we show analytically that, in a two-terminal setup, transport can be turned on and off by a rotation of the in-plane magnetic field. Similarly, in a three terminal configuration, the in-plane magnetic field can be used to turn on and off the transmission between neighbouring contacts, thus realising a directional switch. Analytical calculations are supplemented by a numerical finite-difference method. For small values of the Fermi energy and field strength, the analytical results agree exceptionally well with the numerics. The effect of disorder is also addressed in the numerical approach. We find that the switching functionality is remarkably robust to the presence of strong disorder stemming from the topological nature of the states contributing to the electron transport.
Funder
MacDiarmid Institute for Advanced Materials and Nanotechnology
Ministero dell’Università e della Ricerca
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献