The dispersion relation of a dark soliton

Author:

Meng Ling-ZhengORCID,Mao Ning,Zhao Li-Chen

Abstract

Abstract The energy-velocity relation of a dark soliton is usually derived by its exact solution, which has been used to explain the kinetic motion of the dark soliton widely in many-body physical systems. We perform a variational method to re-derive the dispersion relation, with the consideration that the number of particles of the dark soliton could be conserved. The re-derived dispersion relation is completely different from that given by the exact dark soliton solution. The validity of these two dispersion relations is tested by observing the motion of the dark soliton when we drive impurity atoms that coupled with the soliton. The results suggest that the dispersion relation given by the exact solution usually works better than the one with particle number conservation. This motivates us to reveal that density waves (carrying particle transport) are generated during the acceleration process of a dark soliton, in addition to the previously known sound waves (only carrying energy transport). We further show that the density wave emissions of dark solitons can be inhibited by increasing the impurity atom number, which is trapped by the dark soliton through nonlinear coupling. The discussion is meaningful for investigating and understanding the kinetic motion of dark solitons in many different circumstances.

Funder

Major Basic Research Program of Natural Science of Shaanxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3