Brownian motion-induced amplitude noise in vapor-cell frequency standards

Author:

Micalizio S,Godone A,Gozzelino M,Levi F

Abstract

Abstract We demonstrate that the Brownian motion of alkali metal atoms in buffer gas gives rise to a significant source of frequency instability in vapor cell clocks. We consider, in particular, laser pumped cell devices working in pulsed operation and using a resonant Gaussian light beam to detect the clock transition. It is well known that the diffusion motion through the buffer gas results from many random walks performed by the atoms, as a consequence of the collisions with other atoms/molecules. Owing to this random-walk behavior, the atoms explore different intensity regions of the Gaussian laser beam, reducing the forward light transmission and causing amplitude fluctuations at the photodetector. The contribution of this so called transit noise to the clock frequency stability turns out in the low 10−14 region for a centimeter-scale cell, at the same level of other amplitude noises, like laser relative intensity noise and shot noise. As a consequence, even if it is not the main source of instability in currently used vapor cell clocks, Brownian motion-induced noise represents a novel source of frequency fluctuations and it should be accounted for in the clock stability budget. A preliminary evaluation of the transit noise is also reported for microcell devices.

Funder

European Space Agency

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compact Laser System for the Pulsed Optically Pumped Rubidium Cell Atomic Clock;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3