Abstract
AbstractOne-dimensional (1D) Floquet topological superconductors possess two types of degenerate Majorana edge modes at zero andπquasienergies, leaving more room for the design of boundary time crystals and quantum computing schemes than their static counterparts. In this work, we discover Floquet superconducting phases with large topological invariants and arbitrarily many Majorana edge modes in periodically driven Kitaev chains (KCs). Topological winding numbers defined for the Floquet operator and Floquet entanglement Hamiltonian are found to generate consistent predictions about the phase diagram, bulk-edge correspondence and numbers of zero andπMajorana edge modes of the system under different driving protocols. The bipartite entanglement entropy further shows non-analytic behaviors around the topological transition point between different Floquet superconducting phases. These general features are demonstrated by investigating the KC with periodically kicked pairing or hopping amplitudes. Our discovery reveals the rich topological phases and many Majorana edge modes that could be brought about by periodic driving fields in 1D superconducting systems. It further introduces a unified description for a class of Floquet topological superconductors from their quasienergy bands and entanglement properties.
Funder
the Fundamental Research Funds for the Central Universities
the Young Talents Project of Ocean University of China
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献