Abstract
Abstract
Quantum entanglement is known to be monogamous, i.e. it obeys strong constraints on how the entanglement can be distributed among multipartite systems. Almost all the entanglement monotones so far are shown to be monogamous. We explore here a family of entanglement monotones with the reduced functions are concave but not strictly concave and show that they are not monogamous. They are defined by four kinds of the ‘partial-norm’ of the reduced state, which we call them partial-norm of entanglement, minimal partial-norm of entanglement, reinforced minimal partial-norm of entanglement, and partial negativity, respectively. This indicates that, the previous axiomatic definition of the entanglement monotone needs supplemental agreement that the reduced function should be strictly concave since such a strict concavity can make sure that the corresponding convex-roof extended entanglement monotone is monogamous. Here, the reduced function of an entanglement monotone refers to the corresponding function on the reduced state for the measure on bipartite pure states.
Funder
National Natural Science Foundation of China
Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献