Configurational dynamics of flexible filaments in bacterial active baths

Author:

Zhang Chunhe,Xie Chenliang,Feng Wei,Luo HaoORCID,Liu YananORCID,Jing GuangyinORCID

Abstract

Abstract Biopolymers with microscale length and nanoscale cross-sections subjected to active forces is a common non-equilibrium phenomenon in living creatures. It is therefore crucial to intuitively present and investigate the detailed dynamics of such flexible filaments in an active bath full of living matter. Hence, by introducing fluorescent actin filament into an active suspension of motile bacteria at different number densities in a quasi-two-dimensional chamber, we directly visualize the detailed interaction processes and find that bacteria deform a fluctuating filament by relative motion perpendicular to its principal axis of the filament and straighten a filament by parallel motions. We analyzed the evolution of bending energy in dilute and dense bacterial baths with gradual compact or coiled shapes. We successfully introduce a dimensionless number μ ˜ , named as active elasto-viscous number, which governs the generic deformation of filaments in the bacterial baths by comparing the viscous force generated in the bacterial active baths to the elastic restoring force of filaments. The persistence length measuring the tangential correlation of the flexible filament is found to be proportional to μ ˜ . Finally, an effective temperature of the bacterial bath is given through the relation between constant stiffness and loading forces instead of the popularly used Einstein relation. Our findings provide detailed information and specific scaling of flexible filaments interplay with active forces and in response to living and crowded environments.

Funder

Natural Science Basic Research Program of Shaanxi

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3