Generation and manipulation of phonon lasering in a two-drive cavity magnomechanical system

Author:

Zhang Xiu-Yu,Cao CongORCID,Gao Yong-PanORCID,Fan Ling,Zhang Ru,Wang ChuanORCID

Abstract

Abstract A simple and feasible scheme for the generation and manipulation of phonon lasering is proposed and investigated based on a generic three-mode cavity magnomechanical system, in which a magnon mode couples simultaneously with a microwave cavity mode and a phonon mode. In sharp contrast to all previous phonon lasering schemes with only a single drive, the input pump field for the system in the proposed scheme is split into two microwave driving fields to drive the microwave cavity mode and the magnon mode, respectively. The impact of changing relative phase and relative amplitude ratio of the two microwave drives on mechanical gain, stimulated emitted phonon number, threshold power, and phonon emission line shape are theoretically and numerically investigated. The results indicate that the phonon laser action can be effectively controlled simply by adjusting the relative phase and relative amplitude ratio, so additional and tunable degrees of freedom are introduced to control the phonon laser. Considering the experimental feasibility of the generic cavity magnomechanical system and the two-drive approach, the present scheme provides a potentially practical route for the development of tunable phonon lasering devices with low-threshold, high-gain, and narrow-linewidth properties based on the platform of cavity magnomechanics.

Funder

National Natural Science Foundation of China

State Key Laboratory of Information Photonics and Optical Communications

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3