Ferromagnetic and metamagnetic transitions in itinerant electron systems: a microscopic study

Author:

Yamase Hiroyuki

Abstract

Abstract We perform a microscopic study of itinerant ferromagnetic systems. We reveal a very rich phase diagram in the three-dimensional space spanned by the chemical potential, a magnetic field, and temperature beyond the Landau theory analyzed so far. Besides a generic wing structure near a tricritical point upon introducing the magnetic field, we find that an additional wing can be generated close to a quantum critical end point (QCEP) and also even from deeply inside the ferromagnetic phase. A tilting of the wing controls the entropy jump associated with the metamagnetic transition. Ferromagnetic and metamagnetic transitions are usually accompanied by a Lifshitz transition at low temperatures, i.e. a change of Fermi surface topology including the disappearance of the Fermi surface. In particular, the Fermi surface of either spin band vanishes at the QCEP. These rich phase diagrams are understood in terms of the density of states and the breaking of particle-hole symmetry in the presence of a next nearest-neighbor-hopping integral tʹ, which is expected in actual materials. The obtained phase diagrams are discussed in a possible connection to itinerant ferromagnetic systems such as UGe2, UCoAl, ZrZn2, and others including materials exhibiting the magnetocaloric effect.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hall effect of itinerant electron metamagnetic Lu(Co0.91Al0.09)2;Journal of Magnetism and Magnetic Materials;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3