Abstract
Abstract
We study the quantum fluctuations of the two quadratures of the emitted electromagnetic radiation generated by a quantum Hall device in a quantum point contact geometry. In particular, we focus our attention on the role played by the unavoidable electron–electron interactions between the two edge channels at filling factor two. We investigate quantum features of the emitted microwave radiation, such as squeezing, by studying the current fluctuations at finite frequency, accessible through a two-filters set-up placed just after the quantum point contact. We compare two different drives, respectively a cosine and a train of Lorentzian pulses, used for the injection of the excitations into the system. In both cases quantum features are reduced due to the interactions, however the Lorentzian drive is still characterized by a robust squeezing effect which can have important application on quantum information.
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献