Quantum speed-up in global optimization of binary neural nets

Author:

Liao Yidong,Ebler Daniel,Liu Feiyang,Dahlsten Oscar

Abstract

Abstract The performance of a neural network (NN) for a given task is largely determined by the initial calibration of the network parameters. Yet, it has been shown that the calibration, also referred to as training, is generally NP-complete. This includes networks with binary weights, an important class of networks due to their practical hardware implementations. We therefore suggest an alternative approach to training binary NNs. It utilizes a quantum superposition of weight configurations. We show that the quantum training guarantees with high probability convergence towards the globally optimal set of network parameters. This resolves two prominent issues of classical training: (1) the vanishing gradient problem and (2) common convergence to sub-optimal network parameters. We prove that a solution is found after approximately 4 n 2 log n δ N ˜ calls to a comparing oracle, where δ represents a precision, n is the number of training inputs and N ˜ is the number of weight configurations. We give the explicit algorithm and implement it in numerical simulations.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference80 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum optimization for training quantum neural networks;Quantum Machine Intelligence;2024-06

2. PQCLP: Parameterized quantum circuit based link prediction in dynamic networks;Computer Networks;2024-03

3. Grover's Implementation of Quantum Binary Neural Networks;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

4. An invitation to distributed quantum neural networks;Quantum Machine Intelligence;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3