Abstract
Abstract
A fundamental question of data analysis is how to distinguish noise corrupted deterministic chaotic dynamics from time-(un)correlated stochastic fluctuations when just short length data is available. Despite its importance, direct tests of chaos vs stochasticity in finite time series still lack of a definitive quantification. Here we present a novel approach based on recurrence analysis, a nonlinear approach to deal with data. The main idea is the identification of how recurrence microstates and permutation patterns are affected by time reversibility of data, and how its behavior can be used to distinguish stochastic and deterministic data. We demonstrate the efficiency of the method for a bunch of paradigmatic systems under strong noise influence, as well as for real-world data, covering electronic circuit, sound vocalization and human speeches, neuronal activity, heart beat data, and geomagnetic indexes. Our results support the conclusion that the method distinguishes well deterministic from stochastic fluctuations in simulated and empirical data even under strong noise corruption, finding applications involving various areas of science and technology. In particular, for deterministic signals, the quantification of chaotic behavior may be of fundamental importance because it is believed that chaotic properties of some systems play important functional roles, opening doors to a better understanding and/or control of the physical mechanisms behind the generation of the signals.
Funder
Financiadora de Estudos e Projetos
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
General Physics and Astronomy
Reference72 articles.
1. Stochastic weather and climate models;Palmer;Nat. Rev. Phys.,2019
2. On generating power law noise;Timmer;Astron. Astrophys.,1995
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献