Abstract
Abstract
Reaching gigagauss magnetic fields opens new horizons both in atomic and plasma physics. At these magnetic field strengths, the electron cyclotron energy ℏω
c becomes comparable to the atomic binding energy (the Rydberg), and the cyclotron frequency ω
c approaches the plasma frequency at solid state densities that significantly modifies optical properties of the target. The generation of such strong quasistatic magnetic fields in laboratory remains a challenge. Using supercomputer simulations, we demonstrate how it can be achieved all-optically by irradiating a micro-channel target by a circularly polarized relativistic femtosecond laser. The laser pulse drives a strong electron vortex along the channel wall, inducing a megagauss longitudinal magnetic field in the channel by the Inverse Faraday Effect. This seed field is then amplified up to a gigagauss level and maintained on a sub-picosecond time scale by the synergistic effect of hydrodynamic flows and dynamos. Our scheme sets a possible platform for producing long living extreme magnetic fields in laboratories using readily available lasers. The concept might also be relevant for applications such as magneto-inertial fusion.
Funder
China Scholarship Council
Natural Science Foundation of Top Talent of SZTU
Deutsche Forschungsgemeinschaft
National Key R&D Program
National Natural Science Foundation of China
GCS Juelich
Subject
General Physics and Astronomy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献