Photon discerner: adaptive quantum optical sensing near the shot noise limit

Author:

Bao FanglinORCID,Bauer Leif,López Adrián E Rubio,Yang Ziyi,Wang XuejiORCID,Jacob ZubinORCID

Abstract

Abstract Photon statistics of an optical field can be used for quantum optical sensing in low light level scenarios free of bulky optical components. However, photon-number-resolving detection to unravel the photon statistics is challenging. Here, we propose a novel detection approach, that we call ‘photon discerning’, which uses adaptive photon thresholding for photon statistical estimation without recording exact photon numbers. Our photon discerner is motivated by the field of neural networks where tunable thresholds have proven efficient for information extraction in machine learning tasks. The photon discerner maximizes Fisher information per photon by iteratively choosing the optimal threshold in real-time to approach the shot noise limit. Our proposed scheme of adaptive photon thresholding leads to unique remote-sensing applications of quantum degree of linear polarization camera and quantum LiDAR. We investigate optimal thresholds and show that the optimal photon threshold can be counter-intuitive (not equal to 1) even for weak signals (mean photon number much less than 1), due to the photon bunching effect. We also put forth a superconducting nanowire realization of the photon discerner which can be experimentally implemented in the near-term. We show that the adaptivity of our photon discerner enables it to beat realistic photon-number-resolving detectors with limited photon-number resolution in certain applications. Our work suggests a new class of detectors for information-theory driven, compact, and learning-based quantum optical sensing.

Funder

Army Research Office

Defense Advanced Research Projects Agency

Publisher

IOP Publishing

Reference48 articles.

1. Geometric deep optical sensing;Yuan;Science,2023

2. Advances in photonic quantum sensing;Pirandola;Nat. Photon.,2018

3. Programmable photonic circuits;Bogaerts;Nature,2020

4. Optical quantum computing;O’Brien;Science,2007

5. Optical quantum memory;Lvovsky;Nat. Photon.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3