Abstract
Abstract
It is a central tenet of quantum mechanics that spatial resolution is limited by the wave nature of particles. Energies of stationary states reflect delocalized wave functions and cannot be ascribed to any single point. Yet, electrons confined in nanostructures become localized against the boundary by strong electric fields. Energies then reflect the local curvature of the nanostructure surface rather than entire volume. We propose using spectroscopy of Stark-localized states to map nanostructure surface curvature. By varying field direction, local curvatures are extracted from absorption spectra. Moreover, the required field strength is shown to be feasible experimentally. We use nanowires with elliptic cross section as a detailed benchmark providing quantitative error estimates and practical guide lines.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
EXPRO
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献