Topological spin–valley filtering effects based on hybrid silicene-like nanoribbons

Author:

Yang Jia-En,Lü Xiao-LongORCID,Zhang Chun-Xia,Xie HangORCID

Abstract

Abstract Topological edge states have crucial applications in nano spintronics and valleytronics devices, while topological inner-edge states have seldom been extensively researched in this field. Based on the inner-edge states of the hybridized zigzag silicene-like nanoribbons, we investigate their transport properties. We propose two types of spin–valley filters. The first type can generate two different spin–valley polarized currents in output leads, respectively. The second type outputs the specific spin–valley polarized current in only one of the output leads. All these inner-edge states have the spin–valley-momentum locking property. These types of filters can switch the output spin–valley polarizations by modulating the external fields. Besides, we also find that the device size plays a crucial role in designing these spin–valley filters. Moreover, the local current distributions are calculated to visualize the detailed transport process and understand the mechanism. The mechanism lies that the spin–valley polarized current can nearly freely pass through the system with the same momentum, spin and valley degrees of freedom. The small reflection of the current results from the inter-valley scattering. In particular, we also consider the realistic (disorder) effects on the performance of these filters to ensure the robustness of our systems. We believe these spin–valley current filtering effects have potential applications in the future spintronics and valleytronics device designs.

Funder

The starting foundation of Chongqing University

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3