Ultrahigh molecular recognition specificity of competing DNA oligonucleotide strands in thermal equilibrium: a cooperative transition to order

Author:

Schenkelberger Marc,Trapp Christian,Mai Timo,Giri Varun,Mohammadi-Kambs Mina,Ott Albrecht

Abstract

Abstract The specificity of molecular recognition is important for molecular self-organization. A prominent example is the biological cell where a myriad of different molecular receptor pairs recognize their binding partners with astonishing accuracy within a highly crowded molecular environment. In thermal equilibrium it is usually admitted that the affinity of recognizer pairs only depends on the nature of the two binding molecules. Accordingly, Boltzmann factors of binding energy differences relate the molecular affinities among different target molecules that compete for the same probe. Here, we consider the molecular recognition of short DNA oligonucleotide single strands. We show that a better matching oligonucleotide can prevail against a disproportionally more concentrated competitor with reduced affinity due to a mismatch. We investigate the situation using fluorescence-based techniques, among them Förster resonance energy transfer and total internal reflection fluorescence excitation. We find that the affinity of certain strands appears considerably reduced only as long as a better matching competitor is present. Compared to the simple Boltzmann picture above we observe increased specificity, up to several orders of magnitude. We interpret our observations based on an energy-barrier of entropic origin that occurs if two competing oligonucleotide strands occupy the same probe simultaneously. Due to their differences in binding microstate distributions, the barrier affects the binding affinities of the competitors differently. Based on a mean field description, we derive a resulting expression for the free energy landscape, a formal analogue to a Landau description of phase transitions reproducing the observations in quantitative agreement as a result of a cooperative transition. The advantage of improved molecular recognition comes at no energetic cost other than the design of the molecular ensemble and the presence of the competitor. As a possible application, binding assays for the detection of single nucleotide polymorphisms in DNA strands could be improved by adding competing strands. It will be interesting to see if mechanisms along similar lines as exposed here contribute to the molecular synergy that occurs in biological systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The melting curves of calf thymus-DNA are buffer specific;Journal of Colloid and Interface Science;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3