Abstract
Abstract
In this paper we perform an in-depth theoretical study of a sensing platform based on epsilon-near-zero (ENZ) metamaterials. The structure proposed for sensing is a narrow metallic waveguide channel. An equivalent circuit model is rigorously deduced using transmission line theory, considering several configurations for a dielectric body (analyte sample) inserted within the narrow channel, showing good agreement with results obtained from numerical simulations. The transmission line model is able to reproduce even the most peculiar details of the sensing platform response. Its performance is then evaluated by varying systematically the size, position and permittivity of the analyte, and height of the ENZ channel. It is shown that the sensor is capable of detecting changes in the permittivity/refractive index or position even with deeply subwavelength analyte sizes (∼0.05λ
0), giving a sensitivity up to 0.03 m/RIU and a figure of Merit ∼25. The effective medium approach is evaluated by treating the inhomogeneous cross-section of the analyte as a transmission line filled with a homogeneous material.
Funder
Spanish Ministerio de Economía y Competitividad
Newcastle University
Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research
Public University of Navarra
Subject
General Physics and Astronomy
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献