Subradiance-protected excitation transport

Author:

Needham Jemma A,Lesanovsky IgorORCID,Olmos BeatrizORCID

Abstract

Abstract We explore excitation transport within a one-dimensional chain of atoms where the atomic transition dipoles are coupled to the free radiation field. When the atoms are separated by distances smaller or comparable to the wavelength of the transition, the exchange of virtual photons leads to the transport of the excitation through the lattice. Even though this is a strongly dissipative system, we find that the transport is subradiant, that is, the excitation lifetime is orders of magnitude longer than the one of an individual atom. In particular, we show that a subspace of the spectrum is formed by subradiant states with a linear dispersion relation, which allows for the dispersionless transport of wave packets over long distances with virtually zero decay rate. Moreover, the group velocity and direction of the transport can be controlled via an external uniform magnetic field while preserving its subradiant character. The simplicity and versatility of this system, together with the robustness of subradiance against disorder, makes it relevant for a range of applications such as lossless energy transport and long-time light storage.

Funder

Royal Society

Engineering and Physical Sciences Research Council

H2020 European Research Council

FP7 Ideas: European Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3