Magnetic-induced chiral dynamics in an extended two-leg bosonic ladder

Author:

Mi Lai-Lai,Zhang Wei,Zhou Ming-Zhi,Xu Shi-Dong,Zhang Ai-Xia,Xue Ju-KuiORCID

Abstract

Abstract The realization and detection of chiral physics with ultracold atomic gases provide a unique path for the exploration of topological phases. Here, we show that the interplay of magnetic field and interacting particles in an extended two-leg ladder leads to rich chiral Bloch dynamics. Considering both the on-site contact interaction and nearest-neighbor interactions, the ground state and Bloch dynamics of the system are studied analytically and numerically. When the system is in the ground state, the threshold and phase diagram for the transition between zero-momentum state and plane-wave state are analytically obtained, showing the nearest-neighbor interactions along the legs and rungs have opposite impact on the ground state transition, providing new opportunity to manipulate the ground state transition. When the ladder is perturbated under an external linear force, chiral dephasing of Bloch oscillations (BOs), i.e. symmetry breaking damped BOs (the damping rate of BOs on one leg is larger than the other), are observed. This chirality is absent for vanishing the magnetic field and atomic interaction. Particularly, the chirality of damped BOs is inversed when the magnetic field (chiral current) is inversed. In addition, the damping of BOs induced by different types of atomic interactions is different, and the strength and damping rate of BOs initialized in different ground states are distinct, offering dynamic ways to detect the different ground states. Furthermore, the persistent chiral Bloch oscillations observed in single particle case is predicted analytically, which is a crucial requirement for observation and application of chiral BOs in nonlinear regime. Our results provide an interesting path towards the exploration of topological atomic superfluids.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3