Instability and fingering of interfaces in growing tissue

Author:

Büscher TobiasORCID,Diez Angel L,Gompper GerhardORCID,Elgeti JensORCID

Abstract

Abstract Interfaces in tissues are ubiquitous, both between tissue and environment as well as between populations of different cell types. The propagation of an interface can be driven mechanically. Computer simulations of growing tissues are employed to study the stability of the interface between two tissues on a substrate. From a mechanical perspective, the dynamics and stability of this system is controlled mainly by four parameters of the respective tissues: (i) the homeostatic stress (ii) cell motility (iii) tissue viscosity and (iv) substrate friction. For propagation driven by a difference in homeostatic stress, the interface is stable for tissues which differ in their substrate friction even for very large differences of homeostatic stress; however, it becomes unstable above a critical stress difference when the tissue with the larger homeostatic stress has a higher viscosity. A small difference in directed bulk motility between the two tissues suffices to result in propagation with a stable interface, even for otherwise identical tissues. Larger differences in motility force, however, result in a finite-wavelength instability of the interface. Interestingly, the instability is apparently bound by nonlinear effects and the amplitude of the interface undulations only grows to a finite value in time.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3