Saturating multiple ionization in intense mid-infrared laser fields

Author:

Haniel Franz E,Schröder Hartmut,Kahaly SubhenduORCID,Nayak Arjun,Dumergue Mathieu,Mondal SudiptaORCID,Zoltán Filus,Flender RolandORCID,Kurucz Máté,Haizer Ludovit,Kiss Bálint,Charalambidis Dimitris,Kling Matthias FORCID,Tzallas Paraskevas,Bergues BorisORCID

Abstract

Abstract The interpretation of experimental data from novel mid-infrared few-cycle laser sources requires an understanding of ionization mechanisms and knowledge about related ion yields. Experimental studies have indicated sequential double ionization as the dominant process above 1014 W cm−2. These results contradict a recent prediction that in this spectral region, non-sequential processes dominate the double ionization of xenon up to intensities of about 1015 W cm−2. In either case, the ratio of doubly to singly charged xenon yield reported in previous studies has been limited to a few percent, indicating a regime well below the onset of saturation of the double ionization process. We present an experimental study of double ionization of xenon and krypton atoms exposed to intense near four-cycle pulses at 3.2 μm. Our experiments rely on the ion microscopy technique, which facilitates the detection of ions originating from a restricted region within the interaction volume, thereby reducing the impact of focal averaging. Our measurements suggest that at intensities of close to 1.2 × 1014 W cm−2, double ionization of xenon and krypton is already significantly saturated. In particular, we find a doubly to singly charged yield ratio of about 75 percent for xenon and 25 percent for krypton. We compare our results with the predictions of different models accounting for the effects of volume averaging and focal geometry. We find that in the deeply saturated regime of our experiment, the Perelomov–Popov–Terentyev theory significantly underestimates the observed double ionization yield.

Funder

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ion microscopy with evolutionary-algorithm-based autofocusing;Engineering Research Express;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3