Ab initio study of the reactivity of ultracold RbSr + RbSr collisions

Author:

Man Marijn PORCID,Karman TijsORCID,Groenenboom Gerrit CORCID

Abstract

Abstract We performed ab initio calculations in order to assess the reactivity of ultracold RbSr ( Σ + 2 ) + RbSr ( Σ + 2 ) collisions occurring on the singlet as well as the triplet potential. At ultracold energies reactions are energetically possible if they release energy, i.e., they are exoergic. The exoergicity of reactions between RbSr molecules producing diatomic molecules are known experimentally. We extend this to reactions producing triatomic molecules by calculating the binding energy of the triatomic reaction products. We find that, in addition to the formation of Rb2 + 2Sr and Rb2 + Sr2 in singlet collisions, also the formation of Sr2Rb + Rb and Rb2Sr + Sr in both singlet and triplet collisions is exoergic. Hence, the formation of these reaction products is energetically possible in ultracold collisions. For all exoergic reactions the exoergicity is larger than 1000 cm−1. We also find barrierless qualitative reaction paths leading to the formation of singlet Rb2 + 2Sr and both singlet and triplet Rb2Sr + Sr and Sr2Rb + Rb reaction products and show that a reaction path with at most a submerged barrier exists for the creation of the singlet Rb2 + Sr2 reaction product. Because of the existence of these reactions we expect ultracold RbSr collisions to result in almost-universal loss even on the triplet potential. Our results can be contrasted with collisions between alkali-diatoms, where the formation of triatomic reaction products is endoergic, and with collisions between ultracold SrF molecules, where during triplet collisions only the spin-forbidden formation of singlet SrF2 is exoergic.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3