Abstract
Abstract
Continuous U(1) gauge symmetry, which guarantees the conservation of total excitations in linear bosonic systems, will be broken when it comes to the strong-coupling regime where the rotation wave approximation (RWA) fails. Here we develop analytic solutions for multi-mode bosonic systems with XX-type couplings beyond RWA, and propose a novel scheme to implement high-fidelity quantum state transfer (QST) and entanglement preparation (EP) with high speed. The scheme can be realized with designated coupling strength and pulse duration with which the excitation number keeps unchanged regardless of the breakdown of the global U(1) symmetry. In QST tasks, we consider several typical quantum states and demonstrate that this method is robust against thermal noise and imperfections of experimental sequence. In EP tasks, the scheme is successfully implemented for the preparation of Bell states and W-type states, within a shortest preparation time.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
National Key Research and Development Program of China
Key R&D Program of Guangdong Province
China Postdoctoral Science Foundation
Innovation Program for Quantum Science and Technology
Subject
General Physics and Astronomy