Intra- and interband excitations induced residue decay of the Bose polaron in a one-dimensional double-well

Author:

Chen JieORCID,Mistakidis Simeon IORCID,Schmelcher PeterORCID

Abstract

Abstract We investigate the polaronic properties of a single impurity immersed in a weakly interacting bosonic environment confined within a one-dimensional double-well potential using an exact diagonalization approach. We find that an increase of the impurity–bath coupling results in a vanishing residue, signifying the occurrence of the polaron orthogonality catastrophe. Asymptotic configurations of the systems’ ground state wave function in the strongly interacting regime are obtained by means of a Schmidt decomposition, which in turn accounts for the observed orthogonality catastrophe of the polaron. We exemplify that depending on the repulsion of the Bose gas, three distinct residue behaviors appear with respect to the impurity–bath coupling. These residue regimes are characterized by two critical values of the bosonic repulsion and originate from the interplay between the intra- and the interband excitations of the impurity. Moreover, they can be clearly distinguished in the corresponding species reduced density matrices with the latter revealing a phase separation on either the one- or the two-body level. The impact of the interspecies mass-imbalance on the impurity’s excitation processes is appreciated yielding an interaction shift of the residue regions. Our results explicate the interplay of intra- and interband excitation processes for the polaron generation in multiwell traps and for designing specific polaron entangled states motivating their exposure in current experiments.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3