Abstract
Abstract
Efficient certification and quantification of high dimensional entanglement of composite systems are challenging both theoretically as well as experimentally. Here, we demonstrate how to measure the linear entropy, negativity and the Schmidt number of bipartite systems from the visibility of Mach–Zehnder interferometer using single copies of the quantum state. Our result shows that for any two qubit pure bipartite state, the interference visibility is a direct measure of entanglement. We also propose how to measure the mutual predictability experimentally from the intensity patterns of the interferometric set-up without having to resort to local measurements of mutually unbiased bases. Furthermore, we show that the entanglement witness operator can be measured in a interference setup and the phase shift is sensitive to the separable or entangled nature of the state. Our proposal bring out the power of Interferometric set-up in entanglement detection of pure and several mixed states which paves the way towards design of entanglement meter.
Subject
General Physics and Astronomy