Dynamical aspects of excitonic Floquet states generated by a phase-locked mid-infrared pulse in a one-dimensional Mott insulator

Author:

Yamakawa TakashiORCID,Miyamoto TatsuyaORCID,Sakai Daiki,Okamoto HiroshiORCID

Abstract

Abstract A periodic electric field of light applied on a solid is predicted to generate coupled states of the light electric fields and electronic system called photon-dressed Floquet states. Previous studies of those Floquet states have focused on time-averaged energy-level structures. Here, we report time-dependent responses of Floquet states of excitons generated by a mid-infrared (MIR) pulse excitation in a prototypical one-dimensional (1D) Mott insulator, a chlorine-bridged nickel-chain compound, [Ni(chxn)2Cl](NO3)2 (chxn = cyclohexanediamine). Sub-cycle reflection spectroscopy on this compound using a phase-locked MIR pump pulse and an ultrashort visible probe pulse with the temporal width of ∼7 fs revealed that large and ultrafast reflectivity changes occur along the electric field of the MIR pulse; the reflectivity change reached approximately 50% of the original value around the exciton absorption peak. It comprised a high-frequency oscillation at twice the frequency of the MIR pulse and a low-frequency component following the intensity envelope of the MIR pulse, which showed different probe-energy dependences. Simulations considering one-photon-allowed and one-photon-forbidden excitons reproduced the temporal and spectral characteristics of both the high-frequency oscillation and low-frequency component. These simulations demonstrated that all responses originated from the quantum interferences of the linear reflection process and nonlinear light-scattering processes owing to the excitonic Floquet states characteristic of 1D Mott insulators. The present results lead to the developments of Floquet engineering, and demonstrate the possibility of rapidly controlling the intensity of visible or near-IR pulse by varying the phase of MIR electric fields, which will be utilized for ultrafast optical switching devices.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

JST SPRING

Program for Leading Graduate Schools

JSPS Research Fellowship for Young Scientists

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3