Abstract
Abstract
We report on the first realization of time-dependent quantum detector tomography for commercially available InGaAs avalanche photo detectors. For the construction of appropriate time-dependent POVMs from experimentally measured data, we introduce a novel scheme to calculate the weight of the regularization term based on the amount of measured data. We compare our POVM-based results with the theoretical predictions of the previously developed model by Gouzien et al.. In contrast to our measurement-based construction of a time-dependent POVM for photon detectors, this previous investigation extends a time-independent POVM to a time-dependent one by including effects of detector timing jitter and dead time on the basis of particular model assumptions concerning the inner physical mechanisms of a photon detector. Our experimental results demonstrate that this latter approach is not sufficient to completely describe the observable properties of our InGaAs avalanche photo detectors. Thus, constructing the time-dependent POVM of a detector by direct quantum tomographic measurements can reveal information about the detector's interior that may not easily be included in time-independent POVMs by a priori model assumptions.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献