Canted standing spin-wave modes of permalloy thin films observed by ferromagnetic resonance

Author:

Dąbrowski MaciejORCID,Hicken Robert J,Frisk AndreasORCID,Newman David GORCID,Klewe Christoph,N’Diaye Alpha T,Shafer Padraic,van der Laan Gerrit,Hesjedal ThorstenORCID,Bowden Graham J

Abstract

Abstract Non-collinear spin structures in materials that combine perpendicular and in-plane magnetic anisotropies are of great technological interest for microwave and spin wave-assisted magnetization switching. [Co/Pt] multilayers are well-known perpendicular anisotropy materials that have the potential to pin the magnetization of a soft magnetic layer, such as permalloy (Py), that has in-plane anisotropy, thereby forming a magnetic exchange spring. Here we report on multilayered [Co/Pt]/Pt/Py films, where an additional ultrathin Pt spacer has been included to control the coupling between the sub-units with in-plane and perpendicular magnetic anisotropy. Vector network analyser (VNA)-ferromagnetic resonance (FMR) measurements were made to obtain a complete picture of the resonant conditions, while the dynamical response of the sub-units was probed by synchrotron-based element- and phase selective x-ray detected FMR (XFMR). For all samples, only slight pinning of the dynamic magnetization of the Py by the [Co/Pt] was noted, and the FMR results were dominated by the 50 nm thick Py layer. Out-of-plane VNA-FMR maps reveal the presence of additional modes, e.g. a perpendicular standing spin-wave (PSSW) state. However, as the magnetic field is reduced below the saturation field, the PSSW state morphs continuously through a series of canted standing spin-wave (CSSW) states into a horizontal standing spin-wave (HSSW) state. The PSSW, CSSW and HSSW states are well described using a multilayer model of the Py film. The observation of CSSW modes is of particular relevance to microwave assisted magnetic recording, where microwave excitation stimulates precession of a soft layer canted out of plane by a pulsed magnetic field.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3