Finding spin glass ground states using quantum walks

Author:

Callison AdamORCID,Chancellor NicholasORCID,Mintert Florian,Kendon VivORCID

Abstract

Abstract Quantum computation using continuous-time evolution under a natural hardware Hamiltonian is a promising near- and mid-term direction toward powerful quantum computing hardware. We investigate the performance of continuous-time quantum walks as a tool for finding spin glass ground states, a problem that serves as a useful model for realistic optimization problems. By performing detailed numerics, we uncover significant ways in which solving spin glass problems differs from applying quantum walks to the search problem. Importantly, unlike for the search problem, parameters such as the hopping rate of the quantum walk do not need to be set precisely for the spin glass ground state problem. Heuristic values of the hopping rate determined from the energy scales in the problem Hamiltonian are sufficient for obtaining a better quantum advantage than for search. We uncover two general mechanisms that provide the quantum advantage: matching the driver Hamiltonian to the encoding in the problem Hamiltonian, and an energy redistribution principle that ensures a quantum walk will find a lower energy state in a short timescale. This makes it practical to use quantum walks for solving hard problems, and opens the door for a range of applications on suitable quantum hardware.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3