The percolating cluster is invisible to image recognition with deep learning

Author:

Bayo DjénabouORCID,Honecker AndreasORCID,Römer Rudolf AORCID

Abstract

Abstract We study the two-dimensional site-percolation model on a square lattice. In this paradigmatic model, sites are randomly occupied with probability p; a second-order phase transition from a non-percolating to a fully percolating phase appears at occupation density pc , called percolation threshold. Through supervised deep learning approaches like classification and regression, we show that standard convolutional neural networks (CNNs), known to work well in similar image recognition tasks, can identify pc and indeed classify the states of a percolation lattice according to their p content or predict their p value via regression. When using instead of p the spatial cluster correlation length ξ as labels, the recognition is beginning to falter. Finally, we show that the same network struggles to detect the presence of a spanning cluster. Rather, predictive power seems lost and the absence or presence of a global spanning cluster is not noticed by a CNN with a local convolutional kernel. Since the existence of such a spanning cluster is at the heart of the percolation problem, our results suggest that CNNs require careful application when used in physics, particularly when encountering less-explored situations.

Funder

EPSRC

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference53 articles.

1. Machine learning to classify animal species in camera trap images: Applications in ecology

2. Combination of ResNet and center loss based metric learning for handwritten Chinese character recognition;Zhang,2017

3. Restricted Boltzmann machine learning for solving strongly correlated quantum systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3