Dynamics of spin relaxation in nonequilibrium magnetic nanojunctions

Author:

Smorka Rudolf,Thoss Michael,Žonda MartinORCID

Abstract

Abstract We investigate nonequilibrium phenomena in magnetic nano-junctions using a numerical approach that combines classical spin dynamics with the hierarchical equations of motion technique for quantum dynamics of conduction electrons. Our focus lies on the spin dynamics, where we observe non-monotonic behavior in the spin relaxation rates as a function of the coupling strength between the localized spin and conduction electrons. Notably, we identify a distinct maximum at intermediate coupling strength, which we attribute to a competition that involves the increasing influence of the coupling between the classical spin and electrons, as well as the influence of decreasing local density of states at the Fermi level. Furthermore, we demonstrate that the spin dynamics of a large open system can be accurately simulated by a short chain coupled to semi-infinite metallic leads. In the case of a magnetic junction subjected to an external DC voltage, we observe resonant features in the spin relaxation, reflecting the electronic spectrum of the system. The precession of classical spin gives rise to additional side energies in the electronic spectrum, which in turn leads to a broadened range of enhanced damping in the voltage.

Funder

Grantová Agentura České Republiky

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3