Abstract
Abstract
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for the same system. Here, we derive an exact connection between the time-local and the integro-differential descriptions, focusing on the class of commutative dynamics. The use of the damping-basis formalism allows us to devise a general procedure to go from one master equation to the other and vice versa, by working with functions of time and their Laplace transforms only. We further analyze the Lindbladian form of the time-local and the integro-differential master equations, where we account for the appearance of different sets of Lindbladian operators. In addition, we investigate a Redfield-like approximation, that transforms the exact integro-differential equation into a time-local one by means of a coarse graining in time. Besides relating the structure of the resulting master equation to those associated with the exact dynamics, we study the effects of the approximation on Markovianity. In particular, we show that, against expectation, the coarse graining in time can possibly introduce memory effects, leading to a violation of a divisibility property of the dynamics.
Funder
Alexander von Humboldt-Stiftung
Ministero dell'Istruzione, dell'Università e della Ricerca
Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg
Università degli Studi di Milano
Nagoya University
Subject
General Physics and Astronomy
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献