Generating synthetic magnetism via Floquet engineering auxiliary qubits in phonon-cavity-based lattice

Author:

Wang Xin,Li Hong-Rong,Li Fu-Li

Abstract

Abstract Gauge magnetic fields have a close relation to breaking time-reversal symmetry in condensed matter. In the presence of the gauge fields, we might observe nonreciprocal and topological transport. Inspired by these, there is a growing effort to realize exotic transport phenomena in optical and acoustic systems. However, due to charge neutrality, realizing analog magnetic flux for phonons in nanoscale systems is still challenging in both theoretical and experimental studies. Here we propose a novel mechanism to generate synthetic magnetic field for phonon lattice by Floquet engineering auxiliary qubits. We find that, a longitudinal Floquet drive on the qubit will produce a resonant coupling between two detuned acoustic cavities. Specially, the phase encoded into the longitudinal drive can exactly be transformed into the phonon–phonon hopping. Our proposal is general and can be realized in various types of artificial hybrid quantum systems. Moreover, by taking surface-acoustic-wave (SAW) cavities for example, we propose how to generate synthetic magnetic flux for phonon transport. In the presence of synthetic magnetic flux, the time-reversal symmetry will be broken, which allows one to realize the circulator transport and analog Aharonov–Bohm effects for acoustic waves. Last, we demonstrate that our proposal can be scaled to simulate topological states of matter in quantum acoustodynamics system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3