Towards Stirling engine using an optically confined particle subjected to asymmetric temperature profile

Author:

Nalupurackal Gokul,Lokesh Muruga,Suresh Sarangi,Roy Srestha,Chakraborty Snigdhadev,Goswami Jayesh,M Gunaseelan,Pal Arnab,Roy BasudevORCID

Abstract

Abstract The realization of microscopic heat engines has gained a surge of research interest in statistical physics, soft matter, and biological physics. A typical microscopic heat engine employs a colloidal particle trapped in a confining potential, which is modulated in time to mimic the cycle operations. Here, we use a lanthanide-doped upconverting particle (UCP) suspended in a passive aqueous bath, which is highly absorptive at 975 nm and converts near infra red (NIR) photons to visible, as the working substance of the engine. When a single UCP is optically trapped with a 975 nm laser, it behaves like an active particle by executing motion subjected to an asymmetric temperature profile along the direction of propagation of the laser. The strong absorption of 975 nm light by the particle introduces a temperature gradient and results in significant thermophoretic diffusion along the temperature gradient. However, the activity of the particle vanishes when the trapping wavelength is switched to 1064 nm. We carefully regulate the wavelength-dependent activity of the particle to engineer all four cycles of a Stirling engine by using a combination of 1064 nm and 975 nm wavelengths. Since the motion of the particle is stochastic, the work done on the particle due to the stiffness modulation per cycle is random. We provide statistical estimation for this work averaged over five cycles which can be extended towards several cycles to make a Stirling engine. Our experiment proposes a robust set-up to systematically harness temperature which is a crucial factor behind building microscopic engines.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3