Anomalous two-photon Compton scattering

Author:

Kettle BORCID,Aquila A,Boutet S,Bucksbaum P H,Carini G,Feng Y,Gamboa E,Ghimire S,Glenzer S,Hart P,Hastings J B,Henighan T,Hunter M,Koglin J,Kozina M,Liu H,MacDonald M J,Trigo M,Reis D A,Fuchs MORCID

Abstract

Abstract X-ray free-electron lasers can generate radiation pulses with extreme peak intensities at short wavelengths. This enables the investigation of laser–matter interactions in a regime of high fields, yet at a non-relativistic ponderomotive potential, where ordinary rules of light–matter interaction may no longer apply and nonlinear processes are starting to become observable. Despite small cross-sections, first nonlinear effects in the hard x-ray regime have recently been observed in solid targets, including x-ray-optical sum-frequency generation (XSFG), x-ray second harmonic generation (XSHG) and two-photon Compton scattering (2PCS). Nonlinear interactions of bound electrons in the x-ray range are fundamentally different from those dominating at optical frequencies. Whereas in the optical regime nonlinearities are predominantly caused by anharmonicities of the atomic potential in the chemical bonds, x-ray nonlinearities far above atomic resonances are expected to be due to nonlinear oscillations of quasi-free electrons, including inner-shell atomic electrons. While the quasi-free-electron model agrees reasonably well with the experimental data for XSFG and XSHG, 2PCS measurements have led to unexpected results: the energy of the nonlinearly scattered photons from non-relativistic electrons shows a substantial unexpected red shift in addition to the Compton shift that is well beyond that predicted by a nonlinear quantum electrodynamics model for free electrons. A potential explanation for the spectral broadening is based on a previously unexplored scattering process that involves the whole atom rather than just quasi-free electrons. A first simulation that includes the atomic binding potential was successful in describing a broadening of the spectrum of the nonlinearly scattered photons to longer wavelengths for soft x-rays. However, the same model does not show any broadening at hard x-ray wavelengths, which is in agreement with other simulation approaches. To this point no calculation has been able to reproduce the experimentally observed broadening. Here we present further experimental data of 2PCS for an extended parameter range using additional diagnostics. In particular, we present measurements of the electron momentum distribution during the interaction that strongly suggest that the spectral broadening is not caused by an increased plasma temperature. We extend our measurement of the magnitude of the red shift in beryllium to 1.9\enspace \mathrm{k}\mathrm{e}\mathrm{V}$?> > 1.9 k e V in addition to the Compton shift expected for free electrons and expand the measurement of the angular distribution to include forward scattering angles. We also present first measurements of 2PCS from diamond.

Funder

Fusion Energy Sciences

Basic Energy Sciences

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3