Spin momentum-dependent orbital motion

Author:

Yan ShaohuiORCID,Li ManmanORCID,Liang YanshengORCID,Cai Yanan,Yao Baoli

Abstract

Abstract We present a theoretic analysis on (azimuthal) spin momentum-dependent orbital motion experienced by particles in a circularly-polarized annular focused field. Unlike vortex phase-relevant (azimuthal) orbital momentum flow whose direction is specified by the sign of topological charge, the direction of (azimuthal) spin momentum flow is determined by the product of the field’s polarization ellipticity and radial derivative of field intensity. For an annular focused field with a definite polarization ellipticity, the intensity’s radial derivative has opposite signs on two sides of the central ring (intensity maximum), causing the spin momentum flow to reverse its direction when crossing the central ring. When placed in such a spin momentum flow, a probe particle is expected to response to this flow configuration by changing the direction of orbital motion as it traversing from one side to the other. The reversal of the particle’s orbital motion is a clear sign that spin momentum flow can affect particles’ orbital motion alone even without orbital momentum flow. More interestingly, for dielectric particles the spin momentum-dependent orbital motion tends to be ‘negative’, i.e., in the opposite direction of the spin momentum flow. This arises mainly because of spin–orbit interaction during the scattering process. For the purpose of experimental observation, we suggest the introduction of an auxiliary radially-polarized illumination to adjust the particle’s radial equilibrium position, for the radial gradient force of the circularly-polarized annular focused field tends to constrain the particle at the ring of intensity maximum.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3