Topological nodal line semimetal in an all-sp 2 monoclinic carbon

Author:

Khan Muhammad RizwanORCID,Bu Kun,Wang Jian-TaoORCID

Abstract

Abstract Topological nodal line semimetal is an exotic class of quantum materials featuring the continuous line of nodes inside the first Brillouin zone. Here we identify by systematical ab initio calculations a new all-sp 2 hybridized carbon allotrope with monoclinic C2/c ( C 2 h 6 ) symmetry which is termed as bcm-C16. Total energy calculations show that our proposed bcm-C16 carbon is energetically comparable to or stable than the previously proposed bco-C16, bct-C16, and oP16 carbon. Its dynamical stability has been confirmed by phonon mode calculations. Detailed analysis of the electronic properties show that bcm-C16 carbon is a topological nodal line semimetal with a single closed nodal ring around the Γ high symmetric point, protected by spatial inversion ( P ) and time-reversal ( T ) symmetry. When the nodal ring is projected onto the (001) surface, a topologically protected drumhead-like surface state can be seen inside or outside the nodal ring depending on the different surface terminations. Moreover, we also examined the tensile-strain robustness of the electronic properties of bcm-C16 carbon. The nodal ring is robust under a tensile-strain along the crystalline x- and z-directions up to 20%. In addition, the simulated x-ray diffraction pattern (XRD) of bcm-C16 carbon matches with the experimental pattern found in the detonation and chimney soot experiment. The present proposal has enriched the family of carbon allotropes with topological nodal lines, and pave the way for further theoretical and experimental studies.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3