Abstract
Abstract
We theoretically and computationally study the low-Reynolds-number hydrodynamics of a linear active microswimmer surfing on a compressible thin fluid layer characterized by an odd viscosity. Since the underlying three-dimensional fluid is assumed to be very thin compared to any lateral size of the fluid layer, the model is effectively two-dimensional. In the limit of small odd viscosity compared to the even viscosities of the fluid layer, we obtain analytical expressions for the self-induced flow field, which includes non-reciprocal components due to the odd viscosity. On this basis, we fully analyze the behavior of a single linear swimmer, finding that it follows a circular path, the radius of which is, to leading order, inversely proportional to the magnitude of the odd viscosity. In addition, we show that a pair of swimmers exhibits a wealth of two-body dynamics that depends on the initial relative orientation angles as well as on the propulsion mechanism adopted by each swimmer. In particular, the pusher–pusher and pusher–puller-type swimmer pairs exhibit a generic spiral motion, while the puller–puller pair is found to either co-rotate in the steady state along a circular trajectory or exhibit a more complex chaotic behavior resulting from the interplay between hydrodynamic and steric interactions. Our theoretical predictions may pave the way toward a better understanding of active transport in active chiral fluids with odd viscosity, and may find potential applications in the quantitative microrheological characterization of odd-viscous fluids.
Funder
Bundesministerium für Bildung und Forschung
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献