Abstract
Abstract
We propose a novel scheme to regulate noise infusion into the chaotic trajectories of uncoupled complex systems to achieve complete synchronization. So far the noise-induced synchronization utilize the uncontrolled noise that can be applied in the entire state space. Here, we consider the controlled (intermittent) noise which is infused in the restricted state space to realize enhanced synchronization. We find that the intermittent noise, which is applied only to a fraction of the state space, restricts the trajectories to evolve within the contraction region for a longer period of time. The basin stability of the synchronized states (SS) is found to be significantly enhanced compared to uncontrolled noise. Additionally, we uncover that the SS prevail for an extended range of noise intensity. We elucidate the results numerically in the Lorenz chaotic system, the Pikovski–Rabinovich circuit model and the Hindmarsh–Rose neuron model.
Funder
Science and Engineering Research Board
University Grants Commission
Ministry of Education and Science of the Russian Federation
Department of Science and Technology, Ministry of Science and Technology
Subject
General Physics and Astronomy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献