Abstract
Abstract
We report evolution of the pulsed terahertz (THz) emission from Bi2Te3 topological insulator in a wide temperature range, where an interplay between the topological surface and bulk contributions can be addressed in a distinguishable manner. A circular photogalvanic effect-induced topological surface current contribution to THz generation can be clearly identified in the signal, otherwise, overwhelmed by the hot carrier decoherence in the bulk states. With the decreasing temperature, an initial sharp increase in the topological surface THz signal is observed before it attains a constant value below ∼200 K. The scattering channels between topological surface and bulk regions via carrier-phonon scattering are dominantly active only above the bulk-Debye temperature of ∼180 K, and the temperature-independent behavior of it at lower temperatures is indicative of robust nature of topological surface states. THz emission due to ultrafast photon-drag current in the bulk states is almost independent of temperature in the entire range, while the combined photo-Dember and band-bending effects induced photocurrent is doubled at 10 K.
Funder
Joint Advanced Technology Center, IIT Delhi
Science and Engineering Research Board
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献