Quantum signatures in the quantum Carnot cycle

Author:

Dann RoieORCID,Kosloff RonnieORCID

Abstract

Abstract The Carnot cycle combines reversible isothermal and adiabatic strokes to obtain optimal efficiency, at the expense of a vanishing power output. Quantum Carnot-analog cycles are constructed and solved, operating irreversibly with positive power. Swift thermalization is obtained in the isotherms utilizing shortcut to equilibrium protocols and the adiabats employ frictionless unitary shortcuts. The working medium in this study is composed of a particle in a driven harmonic trap. For this system, we solve the dynamics employing a generalized canonical state. Such a description incorporates both changes in energy and coherence. This allows comparing three types of Carnot-analog cycles, Carnot-shortcut, Endo-shortcut and Endo-global. The Carnot-shortcut engine demonstrates the trade-off between power and efficiency. It posses a maximum in power, a minimum cycle-time where it becomes a dissipator and for a diverging cycle-time approaches the ideal Carnot efficiency. The irreversibility of the cycle arises from non-adiabatic driving, which generates coherence. To study the role of coherence we compare the performance of the shortcut cycles, where coherence is limited to the interior of the strokes, with the Endo-global cycle where the coherence never vanishes. The Endo-global engine exhibits a quantum signature at a short cycle-time, manifested by a positive power output while the shortcut cycles become dissipators. If energy is monitored the back action of the measurement causes dephasing and the power terminates.

Funder

Kavli Institute for Theoretical Physics, University of California, Santa Barbara

Israel Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference75 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3