Chiral flows can induce neck formation in viscoelastic surfaces

Author:

de Kinkelder E MORCID,Fischer-Friedrich EORCID,Aland SORCID

Abstract

Abstract The cell cortex is an active viscoelastic self-deforming sheet at the periphery of animal cells. It constricts animal cells during cell division. For some egg cells, the actomyosin cortex was shown to exhibit counter-rotating chiral flows along the axis of division. Such chiral surface flows were shown to contribute to spatial rearrangements and left-right symmetry breaking in developing organisms. In spite of this prospective biological importance, the effect of chiral forces on the flows and emergent shape dynamics of a deformable surface are completely unknown. To shed a first light on that matter, we present here a numerical study of an axisymmetric viscoelastic surface embedded in a viscous fluid. We impose a generic counter-rotating force field on this surface and study the resulting chiral flow field and shape dynamics for various surface mechanical parameters. Notably, we find that the building of a neck, as is observed during cell division, occurs if the surface contains a strong shear elastic component. Furthermore, we find that a large areal relaxation time results in flows towards the equator of the surface. These flows assist the transport of a surface concentration during the formation of a contractile ring. Accordingly, we show that chiral forces by themselves can drive pattern formation and stabilise contractile rings at the equator. These results provide first mechanistic evidence that chiral flows can play a significant role to orchestrate cell division.

Funder

Heisenberg program

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3