Flagellar length control in biflagellate eukaryotes: time-of-flight, shared pool, train traffic and cooperative phenomena

Author:

Patra Swayamshree,Jülicher FrankORCID,Chowdhury DebashishORCID

Abstract

Abstract Flagella of eukaryotic cells are transient long cylindrical protrusions. The proteins needed to form and maintain flagella are synthesized in the cell body and transported to the distal tips. What ‘rulers’ or ‘timers’ a specific type of cells use to strike a balance between the outward and inward transport of materials so as to maintain a particular length of its flagella in the steady state is one of the open questions in cellular self-organization. Even more curious is how the two flagella of biflagellates, like Chlamydomonas reinhardtii, communicate through their base to coordinate their lengths. In this paper we develop a stochastic model for flagellar length control based on a time-of-flight (ToF) mechanism. This ToF mechanism decides whether or not structural proteins are to be loaded onto an intraflagellar transport (IFT) train just before it begins its motorized journey from the base to the tip of the flagellum. Because of the ongoing turnover, the structural proteins released from the flagellar tip are transported back to the cell body also by IFT trains. We represent the traffic of IFT trains as a totally asymmetric simple exclusion process (TASEP). The ToF mechanism for each flagellum, together with the TASEP-based description of the IFT trains, combined with a scenario of sharing of a common pool of flagellar structural proteins in biflagellates, can account for all key features of experimentally known phenomena. These include ciliogenesis, resorption, deflagellation as well as regeneration after selective amputation of one of the two flagella. We also show that the experimental observations of Ishikawa and Marshall are consistent with the ToF mechanism of length control if the effects of the mutual exclusion of the IFT trains captured by the TASEP are taken into account. Moreover, we make new predictions on the flagellar length fluctuations and the role of the common pool.

Funder

Max-Planck-Gesellschaft

Science and Engineering Research Board, Government of India

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference95 articles.

1. Cell geometry: how cells count and measure size;Marshall;Annu. Rev. Biophys.,2016

2. Size control in dynamic organelles;Marshall;Trends Cell Biol.,2002

3. Subcellular size;Marshall;Cold Spring Harb. Perspect. Biol.,2015

4. Organelle growth control through limiting pools of cytoplasmic components;Goehring;Curr. Biol.,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3