Lattice dynamics of twisted ZnO nanowires under generalized Born–von Karman boundary conditions

Author:

Liu Zhao,Yam Chi-Yung,Gao Shiwu,Sun Tao,Zhang Dong-Bo

Abstract

Abstract Due to their excellent structural flexibility, low dimensional materials allow to modulate their properties by strain engineering. In this work, we illustrate the phonon calculation of deformed quasi-one dimensional nanostructures involving inhomogeneous strain patterns. The key is to employ the generalized Born–von Karman boundary conditions, where the phonon states are characterized with screw and rotational symmetries. We use wurtzite ZnO nanowire (NW) as a representative to demonstrate the validity and efficiency of the present approach. First, we show the equivalence between the phonon dispersions obtained with this approach and that obtained with standard phonon approach. Next, as an application of the present approach, we study the phonon responses of ZnO NWs to twisting deformation. We find that twisting has more influence on the phonon modes resided in the NW shell than those resided around the NW core. For phonon at the NW shell, the modes polarized along the NW axis is more sensitive to twisting than those polarized in the NW radial dimension. Twisting also induces significant reduction in group velocities for a large portion of optical modes, hinting a non-negligible impact on the lattice thermal conductivity. The present approach may be useful to study the strain-tunable thermal properties of quasi-one dimensional materials.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3