Abstract
Abstract
Universality of the long-distance behavior across the Bardeen–Cooper–Schrieffer (BEC)-Bose–Einstein condensate (BCS) smooth transition for two-body density correlation functions and the Cooper-pair probability density is demonstrated in a balanced mixture of a two-component Fermi gas at T = 0. It is numerically shown at the mean-field level that these two-body quantities exhibit an exponential decay in terms of the chemical potential and the low-energy behavior of the gap. A general expression is found for the two-body distributions holding for different features of finite-range potentials, such as divergences at the origin, discontinuities at a finite radius, power-law decay, and exponential decay. The correlation length characterizing the long-distance behavior unravels the dependence on the energy needed to break pairs along the BEC-BCS crossover, a quantity meaningful to the stability of the many-body state.
Funder
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Consejo Nacional de Ciencia y Tecnología
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献