Abstract
Abstract
In windy conditions, the air is turbulent. The strong and intermittent velocity variations of turbulence are invisible to flying animals. Nevertheless, flying animals, not much larger than the smallest scales of turbulence, manage to maneuver these highly fluctuating conditions quite well. Here we quantify honeybee flight with time-resolved three-dimensional tracking in calm conditions and controlled turbulent winds. We find that honeybee mean speed and acceleration are only weakly correlated with the strength of turbulence. In flight, honeybees accelerate slowly and decelerate rapidly, i.e., they break suddenly during turns and then accelerate again. While this behavior is observed in both calm and turbulent conditions, it is increasingly dominant under turbulent conditions where short straight trajectories are broken by turns and increased maneuvering. This flight-crash behavior is reminiscent of turbulence itself. Our observations may help the development of flight strategies for miniature flying robotics under turbulent conditions.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献