Abstract
Abstract
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors and high-speed realization. The original protocol of nonadiabatic holonomic one-qubit gates has been experimentally demonstrated with a superconducting transmon qutrit. However, it requires two noncommuting gates to complete an arbitrary one-qubit gate, doubling the exposure time of the gate to error sources and thus leaving the gate vulnerable to environment-induced decoherence. Single-shot protocol has been subsequently proposed to realize an arbitrary one-qubit nonadiabatic holonomic gate. In this paper, a single-shot protocol of nonadiabatic holonomic gates is experimentally demonstrated by using a superconducting Xmon qutrit, with all the single-qubit Clifford gates carried out by a single-shot implementation. Characterized by quantum process tomography and randomized benchmarking, the single-shot gates reach a fidelity exceeding 99%.
Funder
National Key Research and Development Program 13 of China
National Natural Science Foundation of China
National Basic Research Program of China
Subject
General Physics and Astronomy
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献