Abstract
Abstract
Many systems are composed of multiple, interacting subsystems, where the dynamics of each subsystem only depends on the states of a subset of the other subsystems, rather than on all of them. I analyze how such constraints on the dependencies of each subsystem’s dynamics affects the thermodynamics of the overall, composite system. Specifically, I derive a strictly nonzero lower bound on the minimal achievable entropy production rate of the overall system in terms of these constraints. The bound is based on constructing counterfactual rate matrices, in which some subsystems are held fixed while the others are allowed to evolve. This bound is related to the ‘learning rate’ of stationary bipartite systems, and more generally to the ‘information flow’ in bipartite systems. It can be viewed as a strengthened form of the second law, applicable whenever there are constraints on which subsystem within an overall system can directly affect which other subsystem.
Funder
Foundational Questions Institute
National Science Foundation
Subject
General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献