Retrieval of photoionization group delay in chirped-attosecond pulses photoelectron streaking experiments

Author:

Zhao XiORCID,Liu Jiahao,Luo Guoxiang,Wei Changli

Abstract

Abstract Photoionization time delays have been investigated in many streaking experiments in which an extreme ultraviolet (XUV) attosecond pulse is used to ionize the target in the presence of a dressing infrared laser field. The discrepancies between the photoionization time delays thus experiment measured and those from many sophisticated theoretical simulations have generated a great deal of controversy in recent years. The difficulty of achieving an accuracy of the retrieved time delays comes from two facts: a so-called wavepacket approximation is introduced to construct the photoionization electron wavepacket, this approximation is invalid if atto-chirp of XUV is non-zero; the other one is that the lower sensitivity of the streaking spectra to the phase of the photoionization transition dipole. Here we present a time delay retrieval method born from our recently proposed ‘phase retrieval of broadband pulses auto correlation’ (PROBP-AC) technology to overcome above limitations. We carefully exam the validity of our method and make a few compare with some other common used retrieval codes, and the simulations demonstrate that more accurate results can be retrieved using PROBP AC. Based on the present method, the angular dependent photoionization time delays can also be retrieved. Our investigation casts doubts on the measured group time delays in previous streaking experiments. We also mention here that a single photoionization group time delay at the XUV peak energy is not enough to represent a complete photoemission process; instead, a fully characterization of the photoionization group time delay over the whole bandwidth of the wave packet is required.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3