Continuously and reversibly electro-tunable optical nanoantennas based on phase transition of vanadium dioxide

Author:

Wang Jia-Nan,Xiong Bo,Liu Yu,Chen Chao-Wei,Qi Dong-Xiang,Hou Ben-Qi,Peng RuwenORCID,Wang MuORCID

Abstract

Abstract Optical nanoantennas have attracted significant attention over the past decades, owing to their exceptional capabilities in terms of light manipulation and versatile optical applications. Recently, active nanoantennas have been developed by introducing phase change materials, to achieve specific tunable electromagnetic responses. However, most of these attempts only function with ‘ON’/‘OFF’ states or switch in a few discrete states, significantly restricting the application in dynamic tunability. Thus far, the continuous and reversible modulation of optical nanoantennas has not been sufficiently explored. In this article, we experimentally demonstrate a continuously and reversibly electro-tunable optical nanoantenna, by integrating an asymmetric gold nanodisk dimer array with a vanadium dioxide (VO2) film and graphene thin film. By accurately controlling the applied electrical current, the Joule heat generated in the graphene film excites the metal-insulator phase transition of VO2, and the refractive index of VO2 exhibits a relatively large variation. When VO2 is in the insulating phase, we observe an apparent resonance dip in the reflection spectrum, which is attributed to a hybrid mode originating from the gap plasmon in the dimers and localized surface plasmon (LSP) resonance excited at the edge of the nanodisks. Meanwhile, owing to the coupling between two asymmetric LSP resonances in the neighboring nanodisks, the reflected peak based on the Fano effect is realized. However, once VO2 is in the metallic phase, the hybrid mode becomes weaker and red-shifted, and the Fano effect disappears. Thereafter, the continuous and reversible electro-modulation of the nanoantenna features, including the resonant wavelength, resonant intensity, and quality factors (Q), are experimentally verified in the optical communication region, by varying the applied electrical current in the hybrid structure. To further increase the modulation range of these properties, we scan the gap size and structural asymmetry parameter of the nanodisk dimer. The results show that, with a smaller gap size, the resonant intensity of the nanoantenna is stronger. When the structural asymmetry parameter increases, the resonant wavelength is redshifted. We expect that such continuously and reversibly electro-tunable nanoantennas will stimulate various applications in optical communication systems, tunable photoelectric sensors, and beyond.

Funder

The National Natural Science Foundation of China

The National Key R&D Program of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3